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Abstract: A Smart grid stability analysis is essential for ensuring modern power systems' reliable and secure 
operation. This approach helps identify potential instabilities and disturbances that can lead to blackouts or 
equipment failures. By analyzing the stability of the grid, operators can take proactive measures to maintain a 
stable and resilient power infrastructure. Monitoring smart grid data from various sources and analyzing how 
to control the stability of the grid are challenging tasks. A convolutional neural network (CNN) can effectively 
capture spatial dependencies and patterns from grid data and can help in enabling accurate prediction and 
classification of stability-related events in a power system. However, developing a CNN that has fewer learnable 
parameters and provides high accuracy is challenging. This paper presents a sequential CNN architecture to 
detect the stability of the Decentral Smart Grid Control (DSGC) system. A mathematical model of the 4-node 
start architecture of a smart grid was presented. Later, 12 parameter-based grid datasets from the UCI 
repository were used to validate the proposed network. The proposed CNN accepts sequential data to capture 
temporal dependencies in the data. The sequential process in a single dimension offers fewer learnable 
parameters, making the network more compact and computationally efficient. The proposed 11-layered CNN 
has a total of 12.7K learnable parameters. The detailed analysis of the proposed CNN using ambiguity and the 
t-SNE score suggested that the model can identify discriminative features for classifying data into stable and 
unstable classes. A comparison analysis of the quantitative parameters revealed that the model performed well, 
with 98.82%, 98.55%, 98.88%, and 98.77% accuracy, precision, recall, and F1 score, respectively. 

Keywords: Smart grid, Sustainability, Renewable energy, Convolution neural network, Stability. 
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1 Introduction 

A smart grid is a revolutionary technology that promises to revolutionize the management and 
distribution of electrical electricity. The utilization of cutting-edge sensing, communication, and 
control systems has made it possible to create a power grid that is more reliable, efficient, and kind 
to the environment (Bashir et al., 2021). It facilitates bidirectional energy distribution and 
transportation, encouraging all of its customers to make decisions related to energy (England & 
Alouani, 2020). A framework of the ecosystem using energy incentives was presented in (Van 
Zyl-Bulitta, 2019) for the supply of electrical infrastructure systems. The author suggested that 
Energy co-prosumption (ECP) can facilitate transformative changes and introduce a commons-
based co-prosumer model instead of an individual-based prosumer one. Regarding the operation 
of a smart grid, one of the most essential factors to consider is stability, which can be defined as 
the capacity of the grid to maintain a balanced and secure operation despite various operating 
conditions and disturbances. 

Due to the intricate integration of renewable energy sources, energy storage systems, 
distributed generation, and intelligent devices, the usual methods of stability assessment and 
control employed in traditional power systems must be modified and improved. To address this 
problem, academics, engineers, and researchers have utilized predictive analytics and machine 
learning techniques to create models and algorithms that can identify and prevent stability 
difficulties in advance. 

Predicting the stability of a smart grid involves analyzing a vast amount of real-time data, 
including information on power generation, consumption patterns, weather conditions, and grid 
topology. By applying data analytics and machine learning algorithms to these data, it becomes 
possible to identify patterns, correlations, and anomalies that can help anticipate potential stability 
concerns before they escalate into major disruptions. 

Historical grid data can be used to train machine learning algorithms to discern patterns of 
both stable and unstable grid behavior. These algorithms can subsequently be employed to forecast 
the stability of a grid under various scenarios and settings. As an illustration, they have the ability 
to foresee the consequences of varying renewable energy supplies on the stability of the power 
system or anticipate the outcomes of abrupt shifts in demand for electricity. To ensure grid stability 
and prevent cascading failures, operators can proactively address stability issues by making precise 
predictions. This can involve adjusting generation or load patterns, implementing energy storage 
devices, or activating control mechanisms. 

Furthermore, predictive analytics can assist in optimizing grid operations by providing 
insights into the optimal placement and sizing of renewable energy sources, energy storage 
systems, and other grid assets. By considering stability predictions alongside economic factors, 
environmental considerations, and regulatory constraints, decision-makers can make more 
informed choices to ensure the long-term stability and sustainability of smart grids. 

There are many challenges associated with smart grids, such as the hybridization of many 
cutting-edge technologies and functional characterization of the peer-to-peer microgrid energy 
market (Gould et al., 2023). In general, there are two fundamental categories: socioeconomic 
difficulties and technological obstacles. Some of the socioeconomic challenges include 
stakeholder management, insufficient information, an absence of rules, and large capital 
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expenditures (Kotsiopoulos et al., 2021). Technological challenges include storage limitations, the 
absence of policies, vulnerabilities in cybersecurity when connecting grids to cyber-physical 
systems, inadequate grid infrastructure to accommodate future needs for storing intermittent 
energy production, complex data management from multiple grid components, grid stability issues 
related to energy-sharing, power oscillation, system complacency, and power reservations. This 
paper focuses on the primary technical problem of predicting the stability of a synchronous 
generator, as it directly impacts the dependable transmission of power. A repository for machine 
learning at the University of California, Irvine (UCI) (Arzamasov et al., 2018) was used to obtain 
the datasets for the Electricity Grid. The main contributions of this work include the following: 

• A comprehensive analysis of the efficacy of various machine learning algorithms in smart 
grid stability prediction was performed. 

• A mathematical model used for a 4-node star network to augment the dataset is presented 
in the paper. 

• There is a need for a CNN architecture that yields high accuracy and has fewer learnable 
parameters. Therefore, a new lightweight convolutional neural network is proposed to 
forecast smart grid power stability using 12 different attributes. 

• A comparative analysis of the proposed model with those in previous literature using 
quantitative parameters is presented in the paper. 
The overall paper is organized as follows: The second section presents a literature review 

focusing on the application of machine learning algorithms used for stability analysis. The 
proposed convolutional neural network is presented in section 3, and a comprehensive analysis of 
the obtained results and discussion are presented in section 4. Finally, the conclusion and future 
work are presented in section 5. 

2 Literature Study 
This Prior research has focused primarily on traditional centralized power systems that experience 
little frequency variation (Bano et al., 2020). Decentralized power networks that are connected to 
renewable energy sources experience significant swings across several time scales, such as 
seasonal, intraday, and short-term fluctuations (Schäfer et al., 2016). Therefore, this study focuses 
on previous studies based on decentralized smart grid systems. According to Mohsen et al. 
(Mohsen et al., 2023), evaluating information gathered from a smart grid is time-consuming. 
Machine learning and deep neural networks are two examples of AI that have transformed the 
energy production and distribution process. These neural networks are currently viable in 
applications such as image processing (Desai & Mewada, 2023) (Bharali, 2024) and speech 
recognition (Mewada et al., 2023) and can be used to anticipate smart grid stabilities. It was also 
crucial in predicting smart grid stability (Hong et al., 2020). Moosavirad et al. (Moosavirad et al., 
2024) studied the influence of sociocultural policies which can reduce electricity consumption 
emphasizing educational policies.  

Yin et al. (Yin et al., 2019) created a KRR-XGBoost model to predict the stability of 
distributed power systems. This model also offers valuable insights for designing these systems 
and optimizing costs. The data input components encompassed the grid stability index and stability 
predictor (i.e., stable or unstable) and the elements that influence the grid's stability. Different data-
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level resampling approaches have been employed to address the problem of data imbalance. Later, 
an XGBoost-based machine learning model was used for stability detection. The findings indicated 
that a dataset with equal proportions of data samples across different classes had superior 
performance compared to a dataset with unequal proportions in terms of the performance of 
classifiers. When XGBoost was combined with random oversampling, the accuracy of the forecast 
increased from 94.7% to 96.8%. A support vector machine was used to detect faults in the power 
transmission line in (Shingade & Shah, 2023).  The model succeeded with 95% accurate detection 
using current measurement as a feature set. 

An extreme learning machine optimized using a memetic algorithm to predict stability was 
presented in (Mishra et al., 2022). The model was validated using UCI datasets and achieved 99% 
accuracy. However, they used the original 10,000 observation samples in the network. One study 
(Abu Al-Haija et al., 2021) examined seven machine learning architectures, which included a 
decision tree classifier (DTC), support vector machine (SVM), logistic regression (LoR), linear 
regression (LR), linear discriminant classifier (LDC), k-nearest neighbor (kNN) and naïve Bayes 
classifier (NBC). All classifiers were tested on the original UCI datasets of the smart grid 
(Arzamasov et al., 2018), and the authors observed that optimizing the SVM with 30 epochs 
achieved 99.93% accuracy. A cascade of feature extraction and multiple classifiers was presented 
in (Önder et al., 2023). They observed that the hybridization of a supervised attribute filter and 
fuzzy C-means clustering-based feature weighting with a bagged tree classifier performed best 
among different machine learning algorithms. 

Recurrent neural networks (RNNs) have been suggested as a means to reliably forecast 
smart grid stability. However, RNNs are hindered by the absence of a control mechanism and the 
challenge of vanishing gradient or explosion problems (Massaoudi et al., 2021). Therefore, the 
gated RNN was proposed (Massaoudi et al., 2021) for overcoming the vanishing gradient problem. 
The authors estimated the hyperparameters of the gated RNN using a stimulated annealing 
optimization algorithm. The validation of the structure on their simulated dataset resulted in a 
97.9% prediction rate. Similarly, an LSTM network was proposed in (Alazab et al., 2020) that 
offers 97% stability analysis. Nevertheless, recurrent neural networks (RNNSs) frequently fail to 
achieve desirable levels of precision (Mohsen et al., 2023). 

Multilayer perceptron networks or feed-forward ANN networks offer efficient methods for 
addressing the issue of low accuracy. Moldovan and Salomie (Moldovan & Salomie, 2019) 
normalized the datasets, and three feature selection algorithms were used to extract features from 
the dataset. Four different classifiers were tested with three sets of features. They concluded that 
particle swarm optimization-based feature selection with a multilayer perceptron classifier 
performed well, with 93.8% accuracy. A 19-layered feedforward neural network (FNN) was 
proposed by Darbandi et al. (Darbandi et al., 2020). The suggested approach utilizes the conjugate 
gradient technique in conjunction with the Fletcher–Reeves update algorithm to train the hidden 
and output layers. The network was tested on the IEEE 39-bus system and achieved a maximum 
accuracy of 97.8% on a single-phase connection. 

Feedforward neural networks cannot retain information from previous inputs or outputs. 
Each input is treated autonomously, without considering the sequence or past data. In addition, its 
architecture is fixed and consists of a predefined number of layers and neurons. An inflexible 
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framework can pose difficulties in adjusting the network to meet the intricacy of a specific 
challenge. Therefore, larger and deeper networks are needed for large datasets with greater 
complexity. In contrast, parameter sharing in CNNs reduces the number of parameters, resulting 
in decreased computations. Backward learning makes it more robust for sequential data. This study 
presents a CNN for grid stability prediction. A 4-node star architecture is considered for a 
decentralized smart grid system. The following sections present the proposed CNN and its 
experimental results analysis in comparison with past machine learning, FNN and RNNs. 

3 Proposed Method 
3.1 Mathematical Modelling of Star Architecture Network-based Smart Grids 
This study considers a four-node star architecture network-based power grid. To enable 
bidirectional communication between nodes, the consumer nodes are linked to the central node 
(generator node). This allows them to operate at lower power levels. The star topology has the 
benefit of autonomous networks, which is a major advantage. If one consumer node goes down or 
makes a mistake, it will not impact the others, and the network will continue to function normally. 
Star and bus topologies were found to be popular in the literature survey (Omar et al., 2022). Figure 
1 shows a network with a four-node star topology that was used for dataset collection. The original 
dataset consists of 10000 samples with 13 attributes. However, deep learning-based networks need 
large training datasets to learn them better. Therefore, the mathematical model presented in (Omar 
et al., 2022) was used for data augmentation. The mathematical model of decentralized smart grid 
control can be formulated by considering the key components and control strategies involved in 
the decentralized control of a smart grid. The model incorporates the power generation, 
consumption, and control mechanisms of the grid. 

             

Figure 1. Four-node star architecture of a smart grid 

Decentralized smart grid control systems using a star architecture can be modeled using 
various mathematical approaches. The following are a few types of mathematical models 
commonly used for such systems: 
Linear State-Space Model: This model represents the smart grid control system as a set of linear 
differential equations. It describes the dynamics of the system by defining the state variables, 
inputs, outputs, and their interrelationships. The state-space model allows for the analysis and 
design of control strategies, such as feedback control, using techniques such as linear control 
theory. 
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Agent-Based Model: In an agent-based model, the smart grid control system is represented as a 
collection of autonomous agents, each representing a component or entity in the system. Agents 
have their behaviors, decision-making capabilities, and interactions with other agents. This 
modeling approach captures the decentralized nature of the control system and enables the study 
of emergent system behaviors. 
Optimal Power Flow (OPF) Model: OPF models are optimization-based mathematical models 
used for power system operation and control. They aim to optimize the power flows in the grid 
while satisfying various constraints, such as generator limits, transmission line capacities, and 
demand requirements. Decentralized SGCSs can utilize distributed optimization algorithms to 
solve OPF problems and achieve efficient and reliable operation. 
Game Theory Model: Game theory provides a mathematical framework for analyzing decision-
making and interactions among multiple players in a system. In a smart grid control system, 
different entities, such as generators, consumers, and storage devices, can be modeled as players. 
Game theory models can capture the decentralized decision-making and strategic interactions 
among these players, leading to the analysis of equilibrium outcomes, such as Nash equilibria. 
Stochastic Model: Stochastic models incorporate uncertainties, such as renewable energy 
generation, demand fluctuations, and market prices, into the smart grid control system. These 
models utilize probabilistic methods, such as Markov chains, stochastic differential equations, or 
Monte Carlo simulations, to capture the random nature of system variables. Stochastic models 
enable the assessment of system performance, reliability, and risk analysis. 

To develop a mathematical equation for a smart power grid considering the time required 
to adjust power generation and consumption, as well as the power generated by nodes and their 
price elasticity coefficient, we can utilize a dynamic model. We consider the following parameters: 

• Pi(t): Power generation or consumption at node i at time t, where i = 1, 2, ..., N. 
• Ti: Time constant representing the time required for node i to adjust its power generation 

or consumption. 
• Pdemand(t): Total power demand in the grid at time t. 
• εi: Price elasticity coefficient at node i, representing the responsiveness of power 

generation or consumption to changes in price. 
• Pprice(t): Price of electricity in the grid at time t. 
• Δf(t): Deviation of the system frequency from the nominal frequency at time t. 
• Kf: Frequency control gain. 

The power generation or consumption at each node can be modeled as a first-order dynamic 
system, considering the time required for adjustment: 
dPi(t)/dt = (1/Ti) * (Pi(t) - Pdemand(t))      (1) 

This equation represents the rate of change in power generation or consumption at node i 
with respect to time. It is proportional to the difference between the current power output (Pi(t)) 
and the total power demand (Pdemand(t)) with a time constant of Ti. The price elasticity coefficient 
can be incorporated into the model to reflect the responsiveness of power generation or 
consumption to changes in price. The power adjustment equation is modified as follows: 
dPi(t)/dt = (1/Ti) * (Pi(t) - Pdemand(t) + εi * (Pprice(t) - Pprice(t-1)))  (2) 
In this equation, the additional term εi * (Pprice(t) - Pprice(t-1)) captures the influence of price 
elasticity. It represents the change in power generation or consumption at node i due to the 
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difference between the current price (Pprice(t)) and the previous price (Pprice(t-1)) multiplied by the 
price elasticity coefficient εi.  

By solving these dynamic equations for each node in the smart power grid, considering the 
time constants, power demand, and price elasticity coefficients, we can model the power 
adjustment and response within the grid. Modeling the grid as an oscillator, where the power 
generator node is considered a synchronous generator and the consumer is a synchronous motor. 
For each synchronous generator I (producer) or motor i, the swing equation can be written as 
follows: 
Mi * d²(Δδi(t))/dt² + Di * dΔδi(t)/dt + κi * Δδi(t) = ΔPi(t - τ) - ΔPload(t - τ)   (3) 

In this equation, Δδi(t) represents the rotor angle deviation of synchronous generator i at 
time t, Mi is the moment of inertia of generator i, Di is the damping coefficient, κi is the friction 
coefficient, ΔPi(t) represents the power imbalance of generator i (the difference between the 
generated power and the power demand), and ΔPload(t) represents the total power imbalance due 
to consumer loads. The above equation has many solutions. Therefore, to determine the stability, 
the eigenvalues of the equation are calculated considering linear stability. In the specific instance 
when the maximum eigenvalue has a negative value, the system is deemed stable. Conversely, if 
the maximum eigenvalue is positive, the system is regarded as unstable (Franović et al., 2023). 
3.2 Proposed Sequential CNN Network 

The main objective of the work is to propose a convolutional neural network to predict stability 
from the observed data. In most of the literature, an SVM and a 4-layer ANN network with varying 
numbers of neurons in each layer were tested for prediction. Because the grid data are time series 
data, a 1D CNN network that operates on one-dimensional sequences is proposed in comparison 
to 2D CNNs used for image processing. Normally, a 1D sequential CNN begins with an input layer 
that accepts sequential data. The second layer is a convolutional layer. A convolutional layer that 
applies filters over the input sequence to extract local patterns or features. 

𝑦𝑦𝑖𝑖
𝑝𝑝 = ∑ ∑ 𝑘𝑘𝑚𝑚

𝑝𝑝 𝑋𝑋𝑖𝑖+𝑚𝑚𝑛𝑛𝑀𝑀−1
𝑚𝑚=0 + 𝑏𝑏𝑝𝑝𝑁𝑁

𝑛𝑛=1         (4) 

where y is the input data, f is the feature value, k is the kernel, p indicates the kernel number 
and b is the bias function. N represents the number of channels in the data, and M represents the 
size of the kernel. To prevent the loss of information at the edges of the input, it is common to 
apply zero-padding to both sides of the input. Hence, the dimensions of the feature map F are 
determined by the padding width and the stride length. Another layer is the activation layer. A 
nonlinear activation function introduces nonlinearity and allows the network to learn complex 
relationships in the data. This nonlinear ReLU function is expressed as 

𝑓𝑓(𝑦𝑦) = MAX(0,𝑦𝑦)           (5) 
Later, the pooling layer is used in the CNN. A pooling layer reduces the dimension of feature maps 
from the convolutional layers. The pooling operation can be expressed as 

𝑉𝑉𝑖𝑖
𝑝𝑝 = 𝐹𝐹�𝑦𝑦(𝑖𝑖+0)

𝑛𝑛 ,𝑦𝑦(𝑖𝑖+1)
𝑛𝑛 ,𝑦𝑦(𝑖𝑖+2)

𝑛𝑛 … .𝑦𝑦(𝑖𝑖+𝑀𝑀−1)
𝑛𝑛 � = 1

|𝑦𝑦𝑖𝑖|
∑ 𝑦𝑦⬚
𝑦𝑦𝑦𝑦 𝑦𝑦𝑖𝑖        (6) 

In the proposed network, global average pooling is used. As it averages the data, it does 
not have any learnable parameters. A fully connected layer that makes predictions based on the 
extracted features and an output layer with a softmax activation function for classification tasks. 
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𝑆𝑆𝑆𝑆𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖⬚ = 𝑒𝑒−𝑦𝑦𝑖𝑖
∑ 𝑒𝑒−𝑦𝑦𝑖𝑖𝑀𝑀
𝑚𝑚=0

           (7) 

During the training phase, the parameters (weights and biases) of the 1D CNN are learned 
by minimizing a loss function via techniques such as backpropagation and gradient descent. The 
model is trained to minimize the difference between the predicted output and the true output for a 
given input sequence. The width of the time series is determined by the values of two variables: 
the number of features, denoted K; and the length of the series, denoted N. The convolutional 
filters possess a width equivalent to the width of the time series; however, their lengths may vary. 
The filters are specifically designed for convolutive operation in a unidirectional manner, starting 
at the beginning of the time series and moving toward its endpoint. 
The overall pseudocode of the proposed network is presented in Algorithm 1. 
Algorithm-1 1D sequential CNN pseudocode 
 
Procedure Training with 1DCNN 
 Input : 
 Input training dataset power, time and price elasticity 
 Output: 
 Updated weights k, and bias b for equation 4 using training dataset 
 Forward Pass: 
 Convolve network (equation 4) 
 Compute activation function (equation 4) 
 Normalizes all the activations of a single layer 
 Convolve network (equation 4) 
 Compute activation function (equation 4) 
 Normalizes all the activations of a single layer 
 Apply global average pooling (v) (equation 6) 
 Calculate the softmax function (equation 7) 
 Predict the class 
 Backward Pass: 
 Compute the gradient 𝛿𝛿𝛿𝛿

𝛿𝛿𝑘𝑘𝑖𝑖𝑖𝑖
𝑛𝑛 = 𝛿𝛿𝛿𝛿

𝛿𝛿𝑉𝑉𝑖𝑖
𝑛𝑛 × 𝑦𝑦𝑖𝑖𝑛𝑛 

 Compute Loss function𝐿𝐿 =  −log (exp (𝑦𝑦𝑖𝑖)
∑ (𝑦𝑦𝑖𝑖)𝑁𝑁
𝑖𝑖−1

) 

End Procedure 

4 Results and Discussions 
For network validation, a dataset from the UCI repository (Arzamasov et al., 2018) is used. This 
dataset is simulated using a 4-node star architecture. It has 10,000 observations with 12 properties. 
The real-time dataset consists of 10,000 observations, which can be expanded to 60,000 by 
generating a 3-factorial. The dataset consists of 12 primary classification features and 2 dependent 
variables. The dataset contains features that provide values of time required to adjust power 
generation and consumption for grid users, e.g., 𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3, 𝜏𝜏4, and power generated or consumed by 
the nodes, e.g., power generated by grid +P1 and consumed by the users -𝑝𝑝2, -𝑝𝑝3, and -𝑝𝑝4 and 
their price elasticity coefficient, e.g., 𝛾𝛾1, 𝛾𝛾2, 𝛾𝛾3, and 𝛾𝛾4. Using these parameters, the grid stability 
is analyzed and reported using their eigenvalues, i.e., stab, and categorical values, i.e., stable or 
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unstable. The power adjustment time 𝜏𝜏 ranges from 0.5 to 10. The power P ranges from -2 to -0.5 
for consumers and 𝛾𝛾 ranges between 0.05 and 1. 

Figure 2 displays a heatmap illustrating the correlation values. An insignificant correlation 
between the input values is evident, except for a moderate correlation between 𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3, and 𝑝𝑝4. 
This correlation is predicted, as the equation 𝑝𝑝1=𝑝𝑝2+𝑝𝑝3+𝑝𝑝4 was predetermined at the beginning 
of the simulation. 

 
Figure 2 Correlations between the input parameters 

The proposed 1D sequential CNN consists of a total of 11 layers. The dataset has 12 
features; therefore, the input layer is initialized with 12 channels. The convolutional layers use 32 
and 64 kernels to calculate intermediate features. All layer details are presented in Table 1, along 
with their learnable parameters. The proposed network has a total of 12.7 K learnable parameters. 

Table 1 Layer details of the proposed CNN 

Layer Name Activation Number of Learnable 
Sequence Input 12 (C) x 1 (B) x 1 (T) 0 
1D Convolution 32 (C) x 1 (B) x 1 (T) 2112 
ReLU 32 (C) x 1 (B) x 1 (T) 0 
Layer Normalization 32 (C) x 1 (B) x 1 (T) 64 
1D Convolution 64 (C) x 1 (B) x 1 (T) 10304 
ReLU 64 (C) x 1 (B) x 1 (T) 0 
Layer Normalization 64 (C) x 1 (B) x 1 (T) 128 
1D Global Avg. 
Pooliing 

64 (C) x 1 (B) 0 

Fully Connected 
Layer 

2 (C) x 1 (B) 130 

Softmax 2 (C) x 1 (B) 0 
Classification layer 2 (C) x 1 (B) 0 
Total  12.7 K 
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A complete flow chart for processing the data for stability classification is shown in Figure 
3. Here, the dataset is divided into three parts. The training and validation datasets are used to train 
the network, and the test dataset is used to evaluate the performance of the network. The dataset 
comprises 60,000 samples, 80% of which were allocated for training, 10% for validation and 10% 
for testing. 

 
Figure 3 Flowchart of the proposed method 

The model was tested on an augmented dataset with 60000 observations. The model is validated 
using quantitative parameters, i.e., accuracy, precision, recall, and F1 score. Let true positives 
(TPs) represent the correct prediction of stable cases, true negatives (TNs) represent the correct 
prediction of unstable cases, false positives (FPs) represent the incorrect prediction of unstable 
cases, and false negatives (FNs) represent the incorrect prediction of stable cases. Using these 
parameters, the accuracy, precision, recall, and F1 score are obtained via the following equations. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝑦𝑦(%) =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁

× 100        (8) 

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃(%) =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

× 100       (9) 

𝑅𝑅𝑃𝑃𝐴𝐴𝑆𝑆𝑅𝑅𝑅𝑅(%) =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

× 100        (10) 

𝐹𝐹1 − 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑃𝑃(%) =  2×𝑇𝑇𝑃𝑃𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑛𝑛×𝑅𝑅𝑒𝑒𝑃𝑃𝑅𝑅𝛿𝛿𝛿𝛿
𝑇𝑇𝑃𝑃𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑛𝑛+𝑅𝑅𝑒𝑒𝑃𝑃𝑅𝑅𝛿𝛿𝛿𝛿

× 100      (11)  

Initially, the model was tested using different optimizers. The ‘ADAM’ optimizer provides 
fast learning, stochastic gradient descent with momentum (SGDM) has better generalization 
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capability, and RMSPROP reduces computational effort in the training phase of the CNN. The 
network was trained for 15 epochs. Table 2 presents the experimental results obtained using a test 
dataset for these optimizers. The results showed that the ADAM optimizer performed better than 
did the SGDM and RMSPROP algorithms. Figure 4 shows the accuracy and loss curve for both 
the training and validation datasets over the number of epochs. The validation accuracy of the 
ADAM optimizer was 98.77%. The alignment of accuracy and loss for the training and validation 
datasets showed that there was no overfitting of the network. Table 2 compares the accuracy of 
the test dataset using different optimizers. 

Table 2 Performance results of the optimizer in training the CNN network 

Optimizer Accuracy Precision Recall F1Score 
SGDM 89.57 91.58 88.69 90.11 
RMSPROP 90.12 92.25 89.29 90.74 
ADAM 98.82 98.55 98.88 98.77 

 
Figure 4 Accuracy and loss of the training and validation datasets over a number of epochs using 

the ADMA optimizer 

Figure 5 shows the confusion matrix on the test dataset obtained using the three optimizers. 
The testing accuracy of the SGDM and RMSPROP was 90%, whereas the ADAM optimizer 
outperformed the other algorithms, providing the best accuracy of 98.8%. The first column of 
Figure 5(c) shows that 2133 stable observations and 3792 unstable observations were classified 
correctly out of a total of 6000 test datasets. Out of 2152 stable observations, 97.4% of the 
predictions were correct, and only 0.9% were stable observations misclassified by the network. 
Overall, only 0.3% of the unstable observations were misclassified as stable by the proposed 
network. 

CNNs often learn high-dimensional feature representations of input data. Applying t-SNE 
to these feature representations can help visualize how the network has grouped or separated 
different classes or categories in the data. It can provide insights into the discriminative power of 
the learned features and help identify any potential issues or biases in the network's representations. 
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Figure 6 shows the t-SNE plot obtained from the feature set of the softmax layer. There are very 
few overlaps of the features in the training set, which suggests that the model has succeeded in 
extracting strong features to aid in better classification. 

 

 
(a)     (b)     (c) 

Figure 5 Confusion matrix for the test dataset: (a) SGDM optimizer, (b) RMSPROP optimizer, 
and (c) ADAM optimizer 

 
Figure 6 TSNE plots of the trained network at the softmax layer 

The receiver operating characteristic (ROC) curve representing the performance of the 
network is plotted in Figure 7. The ROC curve provides insights into the trade-off between the 
true positive rate and the false positive rate at various classification thresholds. This approach helps 
visualize the model's performance across a range of operating points and can assist in selecting the 
optimal classification threshold based on the specific requirements of the application. A higher 
AUC-ROC indicates better discrimination between the classes. The proposed network achieved 
an AUC =1 for both the stable and unstable categories. 
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Figure 7 ROC Curve 

The proposed network is further analyzed by observing the probability obtained at the 
softmax layer for classification. The ambiguity of a classification is quantified as the ratio between 
the second-highest probability and the largest probability. An ambiguity near 1 indicates that the 
network has a high level of uncertainty regarding the classification of a certain class. The presence 
of two classes with highly comparable observations may result in uncertainty since the network is 
unable to discern the distinctions between them. Table 3 lists the top 10 observation IDs for which 
the network showed similarities between the stable and unstable classes. Table 3 shows that 
observation number 5180 from the test dataset represents a stable grid. However, the network 
perceives this observation as unstable. 

Table 3 Ambiguity among the classes at the softmax layer 

Observation ID Ambiguity Likeliest Second True Class 
5180 0.998268 'unstable' 'stable' 'stable' 
2519 0.997432 'stable' 'unstable' 'unstable' 
1222 0.995666 'unstable' 'stable' 'stable' 
294 0.993712 'unstable' 'stable' 'stable' 
3889 0.9937 'stable' 'unstable' 'stable' 
1243 0.988337 'unstable' 'stable' 'unstable' 
5209 0.970164 'stable' 'unstable' 'stable' 
5358 0.956865 'unstable' 'stable' 'stable' 
460 0.95252 'unstable' 'stable' 'stable' 
5954 0.935641 'unstable' 'stable' 'stable' 
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Grid stability detection is a highly important subject that has been extensively studied in 
this field. Finally, a comparison of the results obtained in this study with those in the literature is 
presented in Table 4. Paper (Chen et al., 2019) introduces an XGBoost method for predicting 
transient stability in power systems. They also modeled the system considering the generator and 
consumer as a dynamic generator. The authors removed redundant features using correlation 
filtering, and the XGBoost model was proposed to predict patient status. The XGBoost model 
achieved 97.82% classification accuracy. The authors did not present all the parameters. However, 
their model requires hyperparameter optimization. In (Bashir et al., 2021), the authors tested 
various machine learning algorithms, including naïve Bayes, KNN, logistic regression, SVM and 
neural network algorithms. They observed that the neural network performed best, with 98% 
training accuracy and a 97.80% F1 score. However, the details of ANNs are not presented well. In 
addition, the error rate of their ANN is 4%, whereas that of the proposed network is 1.2%. Dhingra 
and Tomar (Dhingra et al., 2022) also performed a comparative analysis of various machine 
learning algorithms, including the extra tree classifier, CatBoost classifier, random forest classifier, 
light gradient boosting machine, gradient boosting classifier, extreme gradient boosting, K 
neighbors classifier, logistic regression, decision tree classifier and naïve Bayes. All the CatBoost 
classifiers performed well, with 95.06% stability detected in the dataset. 

Breviglieri et al. (Breviglieri et al., 2021) proposed a deep CNN to predict the stability of 
a grid. Initially, they presented a five-layer architecture, and using a trial-and-error method, they 
tried to find the best combination of neurons in each layer. In addition, they tested different 
optimizers in their network. The results showed that the accuracy of the ADAM optimizer was 
limited to 95.35 for 20 epochs. Another model with 288-288-24-12-1 neurons trained with 50 
epochs using the NADAM performed well, with 98.82%, 98.55%, 98.88%, and 98.77% accuracy, 
precision, recall and F1 score, respectively. In (Gauli et al., 2023), the authors also used a similar 
four-layer structure with a 24-24-12-1 architecture. They trained their network for 50 epochs to 
obtain a better classification. However, a detailed analysis is not presented in the paper. A 
multilayer perceptron-based feed-forward ANN was used in (Alsirhani et al., 2023). Initially, the 
feature dimensions were reduced via principal component analysis, and the MLP network trained 
for more than 20 epochs was subsequently used for classification. The accuracy of these methods 
was limited to 95.35%. Mohsen et al. (Mohsen et al., 2023) developed an ANN network similar to 
that in (Gauli et al., 2023) with a five-layered ANN composed of 288-288-24-12-1. Their network 
has 100K learnable parameters, and the model accuracy was 97.82%. The proposed model has an 
11-layer architecture and only 12.7 K learnable parameters. The training times were 1 minute and 
40 sec, in contrast to 50 minutes (Breviglieri et al., 2021). Thus, in comparison, the model achieved 
similar or better classification accuracy. 

Table 4 Comparison of the experimental results with those of existing models. 
Model Accuracy Precision Recall F1Score 
ANN (Chahal et al., 2022) 97.27 96.79 95.67 96.22 
ANN (Gauli et al., 2023) 98.66 NA NA NA 
XGBoost (Chen et al., 2019) 97.82 NA NA NA 
ANN (Bashir et al., 2021) 98.00 98.30 97.60 97.80 
CNN + ADAM (Breviglieri et al., 2021) 95.35 97.56 95.10 96.46 
CNN + NADAM (Breviglieri et al., 2021) 97.52 98.67 98.86 98.24 
MLP-ELM (Alsirhani et al., 2023) 95.8 90 88 89 
ANN based on MLP (Mohsen et al., 2023) 97.82 97.64 98.01 NA 
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CatBoost classifier 95.06 95.12 97.25 96.17 
Proposed CNN 98.82 98.55 98.88 98.77 

5. Conclusion 
Predictive stability evaluation is expected to be more important for ensuring that a smart grid stays 
resilient and runs efficiently as it gets better. The reliability and security of an energy network 
depend on the ability to predict the smart grid's stability via data analytics and machine learning 
techniques. First, the study offered a variety of mathematical models to assess the dependent 
characteristics that contribute to smart grid stability. A lightweight sequential CNN for grid 
stability forecasting was subsequently presented in this paper. The model's lower prediction error 
rate was revealed by rigorous experimental analysis using ambiguity analysis and the t-SNE score. 
According to the results of the experiments, there are only 12.7K learnable parameters in the 
suggested network. The network was trained using 15 epochs in 1 minute and 40 seconds. With a 
98.82% test accuracy, 98.55% precision, 98.88% recall rate, and 98.77% F1 score, the suggested 
network performed admirably in the experiments compared to earlier techniques. A comparative 
analysis of several mathematical models can be performed in the future. Furthermore, it is 
necessary to verify the network with respect to the dependent parameter variation 
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